The Dynamics of Mountain-Wave-Induced Rotors
نویسندگان
چکیده
The development of rotor flow associated with mountain lee waves is investigated through a series of highresolution simulations with the nonhydrostatic Coupled Ocean–Atmospheric Mesoscale Prediction System (COAMPS) model using free-slip and no-slip lower boundary conditions. Kinematic considerations suggest that boundary layer separation is a prerequisite for rotor formation. The numerical simulations demonstrate that boundary layer separation is greatly facilitated by the adverse pressure gradients associated with trapped mountain lee waves and that boundary layer processes and lee-wave-induced perturbations interact synergistically to produce low-level rotors. Pairs of otherwise identical free-slip and no-slip simulations show a strong correlation between the strength of the lee-wave-induced pressure gradients in the free-slip simulation and the strength of the reversed flow in the corresponding no-slip simulation. Mechanical shear in the planetary boundary layer is the primary source of a sheet of horizontal vorticity that is lifted vertically into the lee wave at the separation point and carried, at least in part, into the rotor itself. Numerical experiments show that high shear in the boundary layer can be sustained without rotor development when the atmospheric structure is unfavorable for the formation of trapped lee waves. Although transient rotors can be generated with a free-slip lower boundary, realistic rotors appear to develop only in the presence of
منابع مشابه
Recent Developments in the Theory of Atmospheric Rotors
MARCH 2004 AMERICAN METEOROLOGICAL SOCIETY | he Sierra Nevada Range is one of the most prominent and steepest mountain barriers in the United States and, not surprisingly, is a well-known location for a multitude of topographically forced atmospheric phenomena. As the prevailing westerly winds pass over the Sierra Nevada, gravity waves are frequently generated. Occasionally these mountain waves...
متن کاملInversion effects on mountain lee waves
The effect of a sharp low-level temperature inversion on flow over a mountain is investigated via a series of two-dimensional idealized numerical model simulations. The main focus of the study is the effect of the inversion on the formation of lee waves, lee-wave rotors, low-level hydraulic jumps and the occurrence of wave breaking aloft. The idealized problem considered consists of an upwind v...
متن کاملTurbulence in breaking mountain waves and atmospheric rotors estimated from airborne in situ and Doppler radar measurements
Atmospheric turbulence generated in flow over mountainous terrain is studied using airborne in situ and cloud radar measurements over the Medicine Bow Mountains in southeast Wyoming, USA. During the NASA Orographic Clouds Experiment (NASA06) in 2006, two complex mountain flow cases were documented by the University of Wyoming King Air research aircraft carrying the Wyoming Cloud Radar. The stru...
متن کاملMountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling
The day-long observation of a polar stratospheric cloud (PSC) by two co-located ground-based lidars at the Swedish research facility Esrange (67.9 N, 21.1 E) on 16 January 1997 is analyzed in terms of PSC dynamics and microphysics. Mesoscale modeling is utilized to simulate the meteorological setting of the lidar measurements. Microphysical properties of the PSC particles are retrieved by compa...
متن کاملNumerical Calculations of Ship Induced Waves
Nowadays, various numerical methods are developed to extend computational fluid dynamics in engineering applications. One of the most useful methods in free surface modeling is Boundary Element Method (BEM). BEM is used to model inviscid fluid flow such as flow around ships. BEM solutions employ surface mesh at all of the boundaries. In order to model the linear free surface, BEM can be modifie...
متن کامل